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Scaling with respect to disorder in time-to-failure
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Abstract. We revisit a simple dynamical model of rupture in random media with long-range elasticity to
test whether rupture can be seen as a first-order or a critical transition. We find a clear scaling of the
macroscopic modulus as a function of time-to-rupture and of the amplitude of the disorder, which allows
us to collapse neatly the numerical simulations over more than five decades in time and more than one
decade in disorder amplitude onto a single master curve. We thus conclude that, at least in this model,
dynamical rupture in systems with long-range elasticity is a genuine critical phenomenon occurring as soon
as the disorder is non-vanishing.

PACS. 64.60.-i General studies of phase transitions – 62.20.Mk Fatigue, brittleness, fracture, and cracks
– 05.70.Jk Critical point phenomena

1 Small versus large heterogeneity in systems
with limited load transfer

Materials break down according to two broadly defined
scenarios. In the first one, examplified by a pure crystal,
there is no or little damage up to the rupture which occurs
suddenly with no appreciable precursors. In the second
scenario that applies ideally in the limit of very hetero-
geneous media, the system is progressively damaged, first
in an uncorrelated way reflecting the pre-existing hetero-
geneity. As stress or strain increases, the damage becomes
more and more correlated with crack growth and fusion,
announcing the incipient rupture. This second regime is
like percolation at the beginning and correlated percola-
tion later and at the end of the process. In the limit of infi-
nite disorder, the rupture (in the quasi-static limit) can ac-
tually be mapped exactly onto a percolation problem [1].
This second scenario is characterized by a growing suscep-
tibility and well-defined precursors. This classification has
been emphasized by Mogi [2] in his search for earthquake
precursory phenomena. Basing his reasoning on an anal-
ogy between elastic shocks (acoustic emissions) caused by
fracture in heterogeneous materials [3] and earthquakes,
he noticed that the fracture process strongly depends on
the degree of heterogeneity of materials : the more hetero-
geneous, the more warnings one gets; the more perfect,
the more treacherous is the rupture. The failure of perfect
crystals is thus unpredictable while the fracture of dirty
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and deteriorated materials could be forecasted. For once,
complex systems could be simpler to apprehend ! However,
since its inception, this idea has not been much developed
because it is hard to quantify the degrees of “useful” het-
erogeneity, which probably depend on other factors such
as the nature of the stress field and boundary conditions,
the presence of chemical contaminants, etc. This analogy
nevertheless led Mogi to hope that earthquake precursors
could be identified for forecasting. Nowadays, finding clear
earthquake precursors is an active and controversial re-
search domain whose ultimate objective is still eluding
the scientific community [4].

In contrast, the situation is more favorable in the labo-
ratory and in models. For systems where the load transfer
has limited stress amplification, the situation has been
clarified. By limited stress amplification, we refer to the
cases where the stress transfer due to a crack or more
generally a damage zone does not exhibit spatial concen-
tration. This can occur in a variety of ways, for instance,
in the democratic fiber bundle model [5] with the demo-
cratic rule of stress transfer, or in models of block-springs
with stick-slip behavior induced by solid friction in which
the stress transfer is screened beyond the sticking blocks
[6]. In real systems, fiber-matrix composites exhibit this
property as a local fiber rupture is locally accommodated
by a distorsion of the matrix which screens any local con-
centration and help uniformize the stress [7]. For such
systems, it has been shown recently [8] that disorder is
a relevant field leading to tri-criticality, separating a first-
order (or abrupt) regime where rupture occurs without
significant precursors from a second-order (or continuous
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critical) regime where the macroscopic elastic coefficient
exhibits power law behavior. These results have been ob-
tained using analytical solutions of fiber bundle models
and numerical simulations of a two-dimensional tensorial
spring-block system in which stick-slip motion and frac-
ture compete [8]. The idea is that, upon loading a het-
erogeneous material, single isolated microcracks appear
and then, with the increase of load or time of loading,
they both grow and multiply leading to an increase of the
number of cracks. As a consequence, microcracks begin
to merge until a “critical density” of cracks is reached at
which the main fracture is formed. It is then expected
that various physical quantities (acoustic emission, elas-
tic, transport, electric properties, etc.) will vary. However,
the nature of this variation depends on the heterogeneity.
The new classification uses the fact that there is a thresh-
old that can be calculated : if disorder is too small, then
the precursory signals are essentially absent and predic-
tion is impossible. In the language of phase transitions,
the heterogeneity is a control parameter (like the chemical
potential in the Blume-Emery-Griffith Ising model) that
controls the distance to a so-called tri-critical transition as
the disorder increases, from a Griffith-type1 abrupt rup-
ture (“first-order”) regime to a progressive damage ending
at rupture, corresponding to a critical or “second-order”
transition. The other control parameter controls the dis-
tance to global rupture and can be time, strain, stress
or combinations of these. The transition between the two
regimes, which are two modes of brittleness culminating
in a sudden failure, is different from the brittle-ductile
or brittle-plastic transitions. The value of the disorder
threshold separating these two regimes depends on the
system strength and other properties. This has in fact
been tested carefully in several laboratory rupture experi-
ments, for instance using acoustic emissions as precursors
of rupture of fiber composites [10]. The idea that rupture
can be “critical” is not new [11] but the classification of
why, when and how much so is useful.

2 The case of long-range elasticity

The purpose of this note is to complement these results by
studying a case where the stress load transfer has no limit-
ing amplification in amplitude and range, as for instance
in genuine elasticity. In this case, a fracture of length a
produces a stress amplification factor proportional to

√
a

extending to large distances, typically with a r−d decay in
d dimensions for r � a, as a function of the distance r to
the crack tip. In a large system, an arbitrary large crack
can thus in principle produce an arbitrary large stress in-
crement, which can thus overcome any rupture barrier cre-
ated by the heterogeneities. We thus expect the rupture
to belong to a different class than for bounded stress load
transfer.

1 The Griffith criterion for rupture takes exactly the form of
a condition for a critical “droplet” to nucleate and trigger the
growth of the new phase [9].

A rupture of size a generates a stress intensity factor
equal to σdrop

√
a, where σdrop is the stress drop. Let us call

∆σ the typical amplitude of the stress barriers preventing
the progression of cracks. Two cases appear.

• σdrop
√
a < ∆σ: the amplitude of stress enhancement

is smaller than the quenched heterogeneity. The latter
thus dominates and we expect an organization similar
to that observed in the previous case of limited load
transfer.
• σdrop

√
a > ∆σ: sufficiently large cracks will always

create stress transfer larger than the pre-existing bar-
riers. Beyond a characteristic nucleation size a∗ given
by σdrop

√
a∗ ' ∆σ, cracks will not be stopped and will

always break through the system.

This one-body argument seems to favor the idea that
rupture in systems with long-range elasticity should be
“first-order”, i.e. of the Griffith type. As the deformation
is building up, damage first grows progressively and one
should witness an increasing cooperativity of crack growth
and coalescence up to the critical size a∗, at which stage a
different regime is switch on and the macroscopic rupture
is triggered abruptly. This is similar to the situation oc-
curring during the nucleation of a new phase in first-order
phase transitions in which droplet fluctuations below the
critical radius suddenly leave place to the unstable phase
growth when a droplet reaches the critical size.

This scenario turns out to be wrong and the reason
for this is that the “mean-field” argument leading to the
characteristic nucleation size a∗ neglects long-range inter-
actions between many such characteristic cracks in a large
system. Solvable models and numerical evidence indicates
that the rupture is in fact critical, i.e. exhibits an increas-
ing cooperativity of crack growth and coalescence up to
the macroscopic rupture itself [12–15]. Reference [15] sees
breakdown in disordered media as a first-order transition,
while they present ample evidence of scaling of the fraction
of broken bonds and of the divergence of the characteristic
size up to the macroscopic rupture. Their claim is based
on the fact that the fraction of broken bonds has a discon-
tinuity with a jump just at rupture. We think that this is
confusing as it does not distinguish these results from the
genuine abrupt behavior of Griffith rupture, with no sig-
nificant precursors and not divergence of a characteristic
length. A way to reconcile these points of view is to notice
that critical phenomena in random systems have in gen-
eral more than a single correlation length. In rupture, one
correlation length is the characteristic size of the damage,
which diverges upon approaching the global rupture. A
second characteristic length is the size of the system that
dictates the size of the macroscopic fracture. We also stress
that the power law scaling found in rupture in random me-
dia does not correspond to some sort of “spinodal” analog
of a first-order transition. Indeed, “spinodal” decomposi-
tion corresponds to the long-time coarsening of the phase
while rupture deals with the time behavior close to a crit-
ical control parameter value. We also note that, in elastic-
plastic transitions in heterogeneous systems, there is not
jump and the transition qualifies as critical [16]. Since a
model of rupture in random media can be mapped onto
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this elastic-plastic transition [17], this further substanti-
ates the idea that rupture in sufficiently heterogeneous
media has the properties of a critical phenomenon.

These results have been obtained for sufficiently large
disorder. The question arises whether the critical nature
of rupture in the presence of long-range elasticity survives
for all non-vanishing disorder or if rupture becomes truly
abrupt for sufficiently weak disorder. Indeed, we know
that, for exactly zero disorder, rupture is abrupt with no
precursors or any diverging characteristic length: in fiber
models of instance, identical fibers all break simultane-
ously when the stress reaches their common threshold.
Our results below show that the subtlety, richness and
complexity of rupture processes in heterogeneous media
may be seen [8] to arise from the non-commutation of the
two limits (q →∞,∆→ 0), where q is the order of the mo-
ment 〈σq〉 of the stress distribution and ∆ is the amount
of disorder, in the same way that the non-commutativity
of limits is at the crux of some of the major outstanding
problems in physics [18] such as turbulence (viscosity→ 0;
time→∞) and quantum chaos (h→ 0; time→∞). More
practically, this corresponds to the non-commutation of
the limits (p→ pr,∆→ 0), where pr − p is the parameter
measuring the distance from rupture. p can be the time,
stress, or strain depending on the system and boundary
conditions. We now analyze carefully how the response of
a system going to rupture depends on the amplitude of
disorder.

3 Model and results

We study the thermal fuse model [14] which has recently
received experimental examplification [19]. Let us recall
briefly its definition that will be useful for the discussion
below. Fuses are put on the bonds of a square lattice of
size L × L. A fixed current I is imposed at time t = 0
accross the two-dimensional lattice. The fuses are heated
by a generalized Joule effect (electric power ∼ (current)b)

C
dTn
dt

= g−1
n Ibn , (1)

where Tn is the temperature of the nth fuse, C its specific
heat, gn its conductance, In the current flowing in that
fuse. A fuse breaks down, becoming an insulator, when its
temperature Tn reaches a given threshold, the same for all.
The heterogeneity is on the conductances gn of the fuses,
distributed according to a uniform distribution in the in-
terval [1−∆/2; 1+∆/2]. ∆ is the measure of the amplitude
of disorder and varies from 0 (no disorder) to 2 (maximum
disorder). As a result of the delay and relaxation effects
embodied in the dynamics of the heating of each fuse, a
wealth of novel behaviors emerge, with fractal cracks and
critical behavior in the time domain with exponents be-
ing continuous functions of b [14]. The motivation behind
this model was to introduce the simplest genuine dynam-
ical rupture model which is still amenable to quasi-static
elastic calculations. This is done by coupling the dynam-
ical variable to the elastic fields only at the time of each

rupture event. This model has the following equivalent
mechanical formulation in mode III (antiplane) elasticity.
Currents become forces, potentials become displacements,
the temperature of a fuse becomes the damage variable of
this element, which when reaching one triggers its break-
down.

In previous investigations [14,19], it was shown that
the electric resistivity of the system diverges upon ap-
proaching the global rupture occurring at time tr as

R ∼ (tr − t)
−α , (2)

with an exponent 1 ≤ α(b) ≤ 2.3 in 2D as b decreases
from +∞ to 0. It was also observed qualitatively that this
power law is observed in a “critical region” that shrinked
as the disorder amplitude ∆ decreases. The question is
whether the critical region vanishes at a finite non-zero
value of ∆ or just shrinks continuously with ∆, and if so,
how?

We study the resistivity RL,∆(t) as the observable de-
fined for a system of size L with disorder amplitude ∆
at time t. Building on the critical rupture hypothesis, we
test whether RL,∆(t) can be represented as a homogeneous
function. From the Π theorem for homogeneous functions
[20], we write

RL,∆(t) = [
τ

∆δ
]−αG

(
τ

∆δ
, τL1/ν

)
(3)

where τ ≡ tr−t
tr

. The scaling function G(x, y) should scale
as

• L−1/ν � τ � ∆δ (corresponding to t → tr with ∆
fixed and finite size effects not important). This leads
to G(x→ 0, y →∞)→ constant, i.e. R ∼ [ τ

∆δ
]−α;

• L−1/ν � τ and ∆δ ≤ τ (corresponding to ∆→ 0 with
t fixed and finite size effects not important). This leads
to G(x→∞, y →∞)→ xα , i.e. R ∼ constant;
• ∆δ ≤ τ ≤ L−1/ν (corresponding to ∆ → 0 with t

fixed and finite size effects important). This leads to
G(x→∞, y → 0)→ yα, i.e. R ∼ Lα/ν .

We have introduced the usual finite size scaling ansatz
with a characteristic width of the transition scaling as
L−1/ν, where ν is the correlation length exponent. We
have also assumed that the disorder amplitude ∆ deter-
mines the size of the region over which the fracturing stays
critical and have introduced the disorder exponent δ which
may a priori depend on b.

The finite size scaling with the system size L has been
previously tested successfully [12–15]. We turn to a test
of equation (3) with respect to the disorder dependence.
Figures 1 and 2 show the scaling function G defined from
equation (3) as a function of x for two different values of
the exponent b with various values of the disorder field ∆.
The data points are obtained by sampling over 25 indepen-
dent simulations on a square lattice of size 180×180 tilted
at 45◦, using the method of [14]. These results thus corre-
spond to a significant computational effort. The exponent
α was chosen α(0.5) = 0.9 and α(2) = 0.3 respectively,
in accordance to the power law fits done previously [14].
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Fig. 1. Scaling function G(x) = R(x, y) xα(b) versus x for
b = 0.5, using α(0.5) = 0.9 as obtained independently from
[14]. Disorder amplitude ∆ = 0.1(3), 0.2(+), 0.4(�), 0.8(×),
and 1.6(4). The best overlap was obtained using δ = 1.
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Fig. 2. Scaling function G(x) = R(x, y) xα(b) versus x for
b = 2, using α(2) = 0.3 as obtained independently from [14].
Disorder amplitude ∆ = 0.1(3), 0.2(+), 0.4(�), 0.8(×), and
1.6(4). The best overlap was obtained using δ = 1.

We found that data collapse was optimal using δ = 1 for
both values of b.

Figure 2, for α(b = 2) = 0.3, shows an excellent verifi-
cation of the scaling relation equation (3) with an almost
complete overlap for the various values of disorder ∆ from
0.1 to 0.8. As expected G(x) ∝ xα for large x (large tr−t),
and crosses over to a constant for small x (t close to tr).
The data for the largest disorder∆ = 1.6 departs from the
master curve: this can be attributed to the fact that the
resistivity is modified by the pre-existing heterogeneity,
even in absence of damage.

For α(b = 0.5) = 0.9, simulations with different disor-
der collapse neatly onto one scaling curve for x > 5 10−3,
going to the expected powerlaw G(x) ∝ xα for the largest
x and a constant in the region 5 10−3 ≤ x ≤ 2 10−2. For
smaller values of x, the condition L−1/ν � τ � ∆δ, for
which G is a constant and finite size effects are not felt, is
not obeyed anymore and is replaced by L−1/ν � τ � ∆δ,
for which g(x → 0, y → 0) → yα ∝ xα. We thus expect
and observe indeed that the scaling function G should
return to a power law for the smallest values of x after
the intermediate plateau. This finite size effect is all the
strongest for the smallest b, since smaller values of b give a
more diffuse network of cracks [14], whose fractal dimen-

sion increases with b, from the value 1 up to the percola-
tion cluster dimension ≈ 1.9 in 2D. As for Figure 2, the
data for the largest disorder ∆ = 1.6 departs from the
master curve, for the same reason.

There is a simple explanation for the universal value
of the disorder exponent δ = 1, which does not seem to
depend on b while the other exponents (the resistivity ex-
ponent α and the crack fractal dimensions) do [14]. This
has to do with dimensional analysis of (1). Indeed, (1) is a
scale invariant equation and since the electric-elastic equa-
tions are also scale invariant, dimensional analysis should
give the correct scaling law in the time domain. Equation
(1) indicates that the time scales linearly with g. There-
fore, the spread in time scales scales with the width of
the distribution of g. This leads to the prediction that the
width of the critical domain for rupture must scale linearly
with the disorder amplitude ∆, hence δ = 1, irrespective
of the value of the exponent b. A similar argument gives
that tr ∼ I−btot [14], where Itot is the total current applied
to the system. As already pointed out, the thermal fuse
model exhibits a simplification in the coupling between the
damage field (temperature) and the elastic field (electric
current), which occurs only at the time of fuse breaking.
This is the origin of this remarkable universal scaling law
as a function of the disorder.

4 Conclusion

We have shown that, in a simple dynamical model of
rupture in heterogeneous media incorporating long-range
elastic forces, scaling holds as a function of the amplitude
of the disorder: the width of the critical region is linearly
proportional to the amplitude of the disorder. As a conse-
quence, we conclude that, at least in this prototype model,
dynamical rupture in random media is a genuine critical
phenomenon that occurs for any non-zero disorder how-
ever small. In pratice however, the region of control pa-
rameter over which the critical regime can be observed be-
comes exceedingly small for small disorders and may thus
mislead to the conclusion of an abrupt behavior more sim-
ilar to a first-order transition. This situation is different
from the one of bounded load transfer previously inves-
tigated [8] in which there is a finite disorder amplitude
below which the critical regime disappears and is replaced
by an abrupt first-order regime. It would be worthwhile to
test these behaviors on other models and in experiments
to confirm and extent the present classification.
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